ASTRONOMY (SL)

Examination Paper 1 May 2008

Marking Scheme

Marking Grid			
Section	Marks		
1			
2			
3			
4			
Total / 30			

Section 1 The Stars (8 marks)

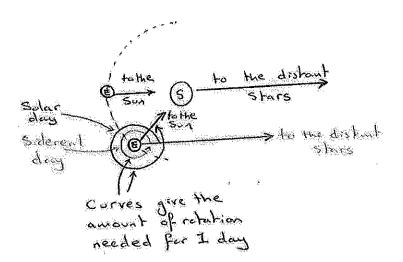
Question 1. [2 marks]

Chromosphere:

- [1]: Any two from:
 - ✓ (part of the) atmosphere of the Sun.
 - ✓ Layer outside/above the photosphere.
 - ✓ (Sun's) atmosphere below the Corona.

Light Year:

[1] – distance travelled by light in 1 year


Note(s): No marks for stating a light year in 'm', etc – this information is given on the Information Sheet.

Question 2. [2 marks]

[2]: Any two from:

- ✓ Solar day -1 rotation of the planet/Earth such that the Sun is in the same position.
- ✓ Sidereal day -1 rotation of the planet/Earth such that the (distant) stars are in the same position.
- ✓ A mark can be given for some comment that the actual difference between these two days is such that a solar day is longer than a sidereal day (3.94 minutes / 3min 56s)

Note(s): A good diagram could also get the marks eg.,

Question 3. [1 mark]

[1]: Yellow

Note(s):

Question 4. [3 marks]

[1]: 22 (years)

[1]: the abundance/amount of sunspots(on the photosphere) cycles over 11 years

[1]: but the magnetic poles also change/oscillate (between N and S) (producing the 22 year cycle).

Section 2 The Planets (8 marks)

Question	5.	[2	marks]
----------	----	----	--------

- [1]: Day (the length of the objects day) is not related to the orbital distance / is random
- [1]: Year longer than the Earth/365 (earth) days

Note(s):

Question 6. [1 mark]

[1]: Mercury

Note(s):

Question 7. [2 marks]

- [1]: General abundance of isotopes is possibly determined by the region of the nebula
- [1]: similar isotope proportions indicate the Moon and Earth were formed in the same region around the Sun.

Note(s):

Question 8. [1 mark]

[1]: Tunguska/Russia/Siberia

Note(s):

Question 9. [2 marks]

[1]: correct working

 $[1]: 1.4(3) \times 10^9 \text{ (Hz)} / 1.4(3) \text{ GHz}$

Section 3 The Galaxies (7 marks)

Question 10. [2 marks]

[1]: M32 = E2 / E3[1]: M109 = SBc

Note(s):

Question 11. [2 marks]

[1]: Redshift – The shifting/moving of the wavelength of emitted light <u>towards</u> to the red of the spectrum.

[1]: HII region – ionised nebula / region where star formation is happening / region ionised by nearby (OB type) stars

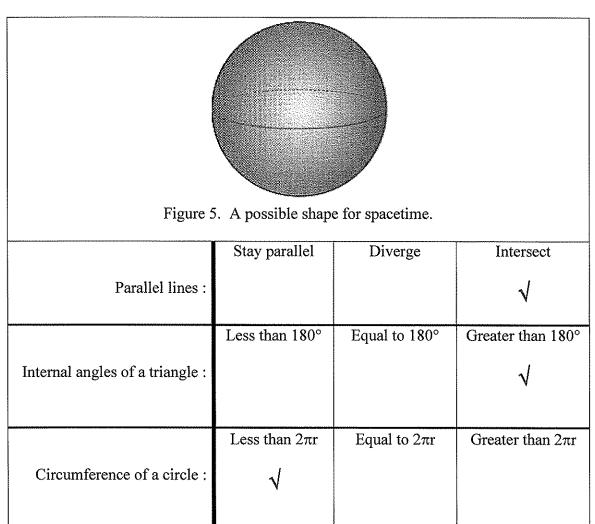
Note(s):

Question 12. [2 marks]

[1]: If the spiral arms were due to (a large amount of light output from) a fixed set of stars

[1]: then (with time), the spirals would be expected to wind up.

Note(s):


Question 13. [1 mark]

[1]: Halo.

Section 4 Cosmology (7 marks)

Question 14. [3 marks]

[3]:

Note(s):

Question 15. [2 marks]

$$H_0 = 72 \text{ kms}^{-1} \text{Mpc}^{-1} = 2.3 \text{ x } 10^{-18} \text{s}$$

Age =
$$1/H_0 = 1/2.3 \times 10^{-18} = 4.3 \times 10^{17} \text{s} = 13.6 \text{ b years}$$

[1]: Age = $1/H_0$

[1]: correct answer

Note(s):

Question 16. [2 marks]

[2]: Any two from:

- ✓ Redshift data (for galaxies)
- ✓ The cosmic microwave background radiation
- ✓ Spatial variations in the background radiation
- ✓ Nuclear abundance