ASTRONOMY (SL)

Examination Paper 2 May 2008

Marking Scheme

Marking Grid		
Section A	Marks	
1		
2		
3		
4		
Section B	Marks	
5		
6		
Total / 60		

Section A (40 marks)

Question 1. [10 marks]

a)

- 1. core
- 2. radiative zone/region/area
- 3. convective zone/region/area
- 4. photosphere
- 5. Sunspot
- 6. chromosphere
- 7. corona

[2]: Award 2 marks if all are correct and 1 mark for a minimum of four correct.

$$D = \frac{M}{V} \implies M = D \times \frac{4}{5} \pi r^{3}$$

$$D_{Sun} = \frac{M_{0}}{\frac{4}{3}\pi R_{0}^{3}}$$

$$M = \frac{M_{0}}{\frac{4}{3}\pi R_{0}^{3}} \times \frac{4}{5}\pi r^{3} = \frac{r^{3}}{R_{0}^{3}} \times M_{0}$$

$$M = \left(\frac{r}{R_{0}}\right)^{3} M_{0} = \left(0.3\right)^{3} M_{0}$$

$$= 6.027 M_{0} = 5.4 \times 0^{28} \text{ kg}$$

$$= 2.72 M_{0} = 32 M_{0}$$

[1]: $M = (r/R_{\odot})^3$. M_{\odot}

[1] : correct answer = $0.027 M_{\odot} / 0.03 M_{\odot} / 2.7\%$ of $M_{\odot} / 3\%$ of $M_{\odot} / 5.4 \times 10^{28}$ kg

c)

- [1]: Size the outward pressure falls therefore the size decreases
- [1]: Temperature (the size falls therefore) the GPE falls therefore KE rises therefore the T rises.

Note(s): In both cases the mark can only be given IF there is a change AND a valid reason.

[1]: Temperature – GPE rises therefore KE falls therefore T falls.

[1]: Luminosity – L depends on r^2 and so, as r increases, L increases.

Note(s): In both cases the mark can only be given IF there is a change AND a valid reason.

e)

[1]: The initial move off the MS is upwards AND right or vertical.

[1]: subsequent path:

- goes through MS on the left of the starting point

- finishing within the shaded box shown in the above diagram.

Question 2. [10 marks]

a)

"homogenous" or 'heterogeneous' is determined by the rate of cooling of two nebula as the planets form.

* homogeneous is felt to be more likely because two cooling rate was comparatively

[1]: type determined by rate of cooling/how fast the cooling is

[1]: homogeneous because cooling rate is high

b)

[2]: Any two from:

- ✓ Density
- ✓ Composition
- ✓ Magnetism
- ✓ Seismic studies

Note(s): 'Earthquakes' is NOT a suitable answer for 'seismic studies'.

c)

[2]: Any two from:

- ➤ Accretional/collision heating
- > Radiogenic/radioactive heating
- > Core formation
- > Tidal heating

d)

[1]: Radiogenic/Radioactive

[1]: Some radioactive isotopes are very long lived / around for billions of years / half lives of billions of years

Note(s): reference to 'millions' in the second marking point is NOT good enough.

e)

	Differentiation is still happening	Differentiation is NOT happening
The Terrestrial Planets:		V
The Gas Giants:	V	

[1]: One mark for each correct tick

Question 3. [10 marks]

a)

- [1]: (trigonometric parallax) method is only suitable to 10^3 pc AND
 - nearest galaxy is further than this / Milky Way bigger than this.
- [1]: angles are too small / uncertainties are too big

b)

Standard Candle

- [1]: Method selected must be one of:
 - o Cepheid Variables.
 - o Supernovae.
- [1]: Range must agree with that stated on the given Figure
- [1]: Correct description of basic method.

Galactic Property

- [1]: Method selected must be one of:
 - o Tully-Fisher.
 - Brightest Cluster galaxy.
 - o Hubble's Law.
- [1]: Range must agree with that stated on the given Figure
- [1]: Correct description of basic method.

c)

- [1]: Hubble's law.
- $[1]: 1/H_0 = age of universe$

Question 4. [10 marks]

a)

$$F = \frac{\alpha Mm}{r^2} = \frac{6.67 \times 10^{11} \times 1.99 \times 10^{24}}{(1.5 \times 10^{11})^2}$$

[1]: Correct working

[1]: Correct answer = 3.5×10^{22} (N)

b)

[1]: (always) towards the Sun / towards the centre of the motion/orbit

c)

[1]: Arrow must be straight

[1]: directed to the left (by eye)

d)

[1]: the speed of light $/ 3 \times 10^8$ m/s

e)

$$V = \frac{d}{t}$$
 $\Rightarrow t = \frac{d}{v} = \frac{1.5 \times 10^{11}}{3 \times 10^{8}} = \frac{500 \text{ s}}{3 \times 10^{8}}$
= $\frac{8.3 \text{ min}}{200 \text{ s}} (\frac{8 \text{ m}}{200 \text{ s}})$

[1]: correct working

[1]: Correct answer = 500s = 8.3 min = 8min 20s

f)

[1]: The Sun('s mass) distorts the (local) spacetime

[1]: The Earth moves on (this) spacetime

Section B (20 marks)

Question 5. [2 marks]

a)

Black Hole:

[1]: dead star / object with a grav field strong/large enough to prevent light escaping

Galaxy

- [1]: Answer must include
 - large collection/number of stars
 - held together with/by gravity
- b)
- [1]: mass is millions of times greater / found at the centre of a galaxy / galaxy revolves around them
- c)
- [2]: Any two from:
 - ✓ UV
 - ✓ X-rays
 - ✓ Gamma rays
 - ✓ High energy particles
- d)
- [1]: emissions occur when material falls/is sucked/drops into the BH
- [1]: material is heated to very high temperatures.
- e)
- [1]: Active
- [1]: because the excess is in a localised region ORA
- f)

Distance = 20,000 light years

Distance = $1.9 \times 10^{20} \,\mathrm{m}$ (20,000 x 9.5 x 10¹⁵)

[1]: correct conversion

Note: This mark is for the conversion NOT the correct answer.

g)

$$F = G M M = 6.67 \times (0^{11} \times (110^{11} \times 1.99 \times 10^{30})^{2}$$

$$(1.9 \times (0^{20})^{2})$$

- [1]: indication that the mass of EACH galaxy is $1 \times 10^{11} \times 1.99 \times 10^{30} = 1.99 \times 10^{41} \text{kg}$
- [1]: correct answer = 7.3×10^{31} kg
- h)
- [1]: it is not emitted spherically / in all directions ORA
- i)
- $[1]: O_3/3$ atoms of oxygen in a molecule

Astronomy SL Examination: Paper 2 MS

j)
[1]: ozone excited / ozone absorbs energy / photons collide with molecules
[1]: breaking the bonds

k)
[1]: atmosphere is not in equilibrium
[1]: (possibly) contain life

l)
[1]: compresses gas / nebulae
[1]: decrease Jeans mass of the cloud

Question 6. [1 mark]

a)

Auroras

[1]: light emitted from the upper atmosphere

[1]: side of planet away from the Sun

b)

[1]: (banding is due to) convection cells / convention cycles / Hadley cells

[1]: colour is due to chemicals contained within them

c)

[1]: normal telescope uses visible light

[1]: Jupiter's auroras emit x-rays

d)

Speed =
$$\frac{d}{t} = \frac{1.5 \times 10^{11}}{(2 \times 24 \times 3600)} = 8.7 \times 10^{5} \text{ m/s}$$

 $[1]: 2 \text{ days} = 2 \times 24 \times 3600 / 1.7 \times 10^5 \text{ s}$

[1]: correct method

[1]: correct answer = 8.7 x 10^5 m/s

Note: only using '2' for the time give 7.5×10^{10} m/s = 1 mark

e)

[1]: the Sun's gravitational field

[1]: produces an attractive force against the motion

f)

$$F = \frac{L}{A} = \frac{L}{4\pi r^2}$$

$$S_0, \text{ if distance is } \times 5.2, \text{ Flux reduces}$$

$$S_0, \text{ of distance is } \times 5.2 = 3.7 \times 10^{-2} \text{ is}$$

$$27 \text{ times less.}$$

[1]: some indication that F is proportional to $1/r^2$

[1]: correct answer = 27 times smaller $/ 1/5.2^2 / x 3.2 \times 10^{-2}$

g)

[1]: Jupiter is seen to rotate

[1]: it is not solid / gaseous

h)

[1]: One from:

✓ reverse it

✓ increase it

✓ squash the lines/flux/field together

✓ produce magnetic reversal

i)

[1]: volcanic eruptions

[1]: on Io

Astronomy SL Examination: Paper 2 MS

j)
[1]: Moon is the Earths <u>only</u> sensible option
[1]: Moon is no longer volcanic