

Astronomy Standard level Paper 1

Specimen paper	
	Candidate session number

45 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all of the questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the astronomy data booklet is required for this examination paper.
- The maximum mark for this examination is [30 marks].

Answer **all** questions. Write your answers in the boxes provided.

The Stars

1.	Define the follow	wing two terms.	[2]
	Chromosphere:		
	Light Year:		

2. The solar activity can be followed by observing the sunspots on the photosphere (see Figure 1)

Figure 1: Sunspots on the surface of the Sun.

[Source: https://www.nasa.gov and http://voices.nationalgeographic.com]

The timescale over which the Sun's activity cycle varies is often incorrectly said to be 11 years. State the correct period for the cycle and explain the error commonly made.

[3]

Correct period	d:years.
Explanation:	

Turn over

3.	Two stars, A and B, have the same spectral type but luminosities of $L_{\rm A}=10$	$^{3}L_{\odot}$	and
	$L_{\rm p} = 10^{-3} L_{\rm o}$	O	

What is the approximate ratio of their radii, $\frac{R_A}{R_B}$? [3]

 	 	٠.		٠.	 	 	 ٠.	٠.	 	 	 	 	 	 ٠.	٠.			 	 ٠.		
 	 				 	 	 ٠.		 	 	 	 	 	 ٠.			 	 	 ٠.		
 	 	٠.		٠.	 	 	 ٠.	٠.	 	 	 	 	 	 ٠.	٠.			 	 ٠.		
 	 	٠.			 	 	 ٠.	٠.	 	 	 	 	 	 ٠.	٠.			 	 ٠.		
 	 	٠.	٠.		 ٠.	 	 ٠.	٠.	 	 	 	 	 	 ٠.	٠.			 	 ٠.		
 	 		٠.		 ٠.	 	 ٠.	٠.	 	 	 	 	 	 ٠.	٠.		 	 	 		
 	 	٠.			 	 	 	٠.	 	 	 	 	 	 ٠.				 	 ٠.		
 	 	٠.	• •	٠.	 	 	 ٠.			 	 	 	 	 ٠.	٠.			 	 ٠.	-	
 	 			٠.	 	 	 ٠.		 	 	 	 	 	 ٠.	٠.	٠.		 	 ٠.		

The Planets

For electromagnetic radiation of wavelength 21 cm, calculate the frequency.	I
Briefly explain how it is thought the Moon formed around the Earth	
Briefly explain how it is thought the Moon formed around the Earth.	
Briefly explain how it is thought the Moon formed around the Earth.	
Briefly explain how it is thought the Moon formed around the Earth.	
Briefly explain how it is thought the Moon formed around the Earth.	
Briefly explain how it is thought the Moon formed around the Earth.	
Briefly explain how it is thought the Moon formed around the Earth.	

Turn over

6. An extinction event is one which produces a sharp decrease in the number of species in a relatively short period of time. Mass extinctions affect an unusually large number of species in a short period.

In the past 550 million years there have been five major events where at least 50 % of the planet's animal species died!

For such mass extinctions to occur, the following two factors are required:

- 1. Long-term pressure on the eco-system.
- 2. A sudden catastrophe towards the end of the period of pressure.

The following table gives some factors which could possibly combine to result in a mass extinction event. Complete the following table by ticking **one** box in each row to indicate if the factor is either long-term or short-term.

Possible factors contributing to a mass extinction event

Factor Long-term factor Short-term factor

Asteroid impact

Continental drift

Supernova event

[2]

Galaxies

7.	Define the following two terms.	[2]
	Redshift:	
	HII region:	
8.	Briefly explain what is known as the winding dilemma.	[2]

Turn over

9. Figure 2 shows two of the four main types of galaxy. Using the Hubble classification for naming galaxies, state, in a word, what types of galaxies are shown.

[2]

Figure 2: Two different types of galaxy

[Sources: https://apod.nasa.gov and http://messier.seds.org]

	M100:								
	M49:								
10.	The flattening factor for an elliptical galaxy has not been seen to be greater than 0.70. For this value, calculate the ratio of the semi-major to semi-minor axis.	[2]							

Cosmology

11. Theoretically, the shape of spacetime could be shown by considering parallel lines, the internal angles of a triangle and the circumference of a circle. For the spacetime shown in **Figure 5**, indicate the result of such tests with a single tick in each row below the figure.

[3]

	Stay parallel	Diverge	Intersect
Parallel lines:			
	Less than 180°	Equal to 180°	Greater than 180°
Internal angles of a triangle:			
	Less than 2πr	Equal to 2πr	Greater than 2πr
Circumference of a circle:			

12.	Using Hubble's constant, calculate the age of the universe.	[2]
		- 1

Turn over

State ${f two}$ pieces of evidence supporting the Big Bang.

13.

[2]

Evidence 1:	
Evidence 2:	

Please **do not** write on this page.

Answers written on this page will not be marked.

Turn over

Please **do not** write on this page.

Answers written on this page will not be marked.

12FP12